Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 23, 2026
-
Concerns about the risks and harms posed by artificial intelligence (AI) have resulted in significant study into algorithmic transparency, giving rise to a sub-field known as Explainable AI (XAI). Unfortunately, despite a decade of development in XAI, an existential challenge remains: progress in research has not been fully translated into the actual implementation of algorithmic transparency by organizations. In this work, we test an approach for addressing the challenge by creating transparency advocates, or motivated individuals within organizations who drive a ground-up cultural shift towards improved algorithmic transparency.Over several years, we created an open-source educational workshop on algorithmic transparency and advocacy. We delivered the workshop to professionals across two separate domains to improve their algorithmic transparency literacy and willingness to advocate for change. In the weeks following the workshop, participants applied what they learned, such as speaking up for algorithmic transparency at an organization-wide AI strategy meeting. We also make two broader observations: first, advocacy is not a monolith and can be broken down into different levels. Second, individuals' willingness for advocacy is affected by their professional field. For example, news and media professionals may be more likely to advocate for algorithmic transparency than those working at technology start-ups.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Algorithmic recourse, or providing recommendations to individuals who receive an unfavorable outcome from an algorithmic system on how they can take action and change that outcome, is an important tool for giving individuals agency against algorithmic decision systems. Unfortunately, research on algorithmic recourse faces a fundamental challenge: there are no publicly available datasets on algorithmic recourse. In this work, we begin to explore a solution to this challenge by creating an agent-based simulation called The Game of Recourse (an homage to Conway's Game of Life) to synthesize realistic algorithmic recourse data. We designed The Game of Recourse with a focus on reliability and fairness, two areas of critical importance in socio-technical systems.more » « less
-
Concerns about the risks posed by artificial intelligence (AI) have resulted in growing interest in algorithmic transparency. While algorithmic transparency is well-studied, there is evidence that many organizations do not value implementing transparency. In this case study, we test a ground-up approach to ensuring better real-world algorithmic transparency by creating transparency influencers — motivated individuals within organizations who advocate for transparency. We held an interactive online workshop on algorithmic transparency and advocacy for 15 professionals from news, media, and journalism. We reflect on workshop design choices and presents insights from participant interviews. We found positive evidence for our approach: In the days following the workshop, three participants had done pro-transparency advocacy. Notably, one of them advocated for algorithmic transparency at an organization-wide AI strategy meeting. In the words of a participant: “if you are questioning whether or not you need to tell people [about AI], you need to tell people.”more » « less
-
Algorithmic systems are often called upon to assist in high-stakes decision making. In light of this, algorithmic recourse, the principle wherein individuals should be able to take action against an undesirable outcome made by an algorithmic system, is receiving growing attention. The bulk of the literature on algorithmic recourse to-date focuses primarily on how to provide recourse to a single individual, overlooking a critical element: the effects of a continuously changing context. Disregarding these effects on recourse is a significant oversight, since, in almost all cases, recourse consists of an individual making a first, unfavorable attempt, and then being given an opportunity to make one or several attempts at a later date — when the context might have changed. This can create false expectations, as initial recourse recommendations may become less reliable over time due to model drift and competition for access to the favorable outcome between individuals. In this work we propose an agent-based simulation framework for studying the effects of a continuously changing environment on algorithmic recourse. In particular, we identify two main effects that can alter the reliability of recourse for individuals represented by the agents: (1) competition with other agents acting upon recourse, and (2) competition with new agents entering the environment. Our findings highlight that only a small set of specific parameterizations result in algorithmic recourse that is reliable for agents over time. Consequently, we argue that substantial additional work is needed to understand recourse reliability over time, and to develop recourse methods that reward agents’ effort.more » « less
-
The “impossibility theorem” — which is considered foundational in algorithmic fairness literature — asserts that there must be trade-offs between common notions of fairness and performance when fitting statistical models, except in two special cases: when the prevalence of the outcome being predicted is equal across groups, or when a perfectly accurate predictor is used. However, theory does not always translate to practice. In this work, we challenge the implications of the impossibility theorem in practical settings. First, we show analytically that, by slightly relaxing the impossibility theorem (to accommodate a practitioner’s perspective of fairness), it becomes possible to identify abundant sets of models that satisfy seemingly incompatible fairness constraints. Second, we demonstrate the existence of these models through extensive experiments on five real-world datasets. We conclude by offering tools and guidance for practitioners to understand when — and to what degree — fairness along multiple criteria can be achieved. This work has an important implication for the community: achieving fairness along multiple metrics for multiple groups (and their intersections) is much more possible than was previously believed.more » « less
-
Abstract Increasingly, laws are being proposed and passed by governments around the world to regulate artificial intelligence (AI) systems implemented into the public and private sectors. Many of these regulations address the transparency of AI systems, and related citizen-aware issues like allowing individuals to have the right to an explanation about how an AI system makes a decision that impacts them. Yet, almost all AI governance documents to date have a significant drawback: they have focused on what to do (or what not to do) with respect to making AI systems transparent, but have left the brunt of the work to technologists to figure out how to build transparent systems. We fill this gap by proposing a stakeholder-first approach that assists technologists in designing transparent, regulatory-compliant systems. We also describe a real-world case study that illustrates how this approach can be used in practice.more » « less
-
Despite the increasing use of standards for documenting and testing agent-based models (ABMs) and sharing of open access code, most ABMs are still developed from scratch. This is not only inefficient, but also leads to ad hoc and often inconsistent implementations of the same theories in computational code and delays progress in the exploration of the functioning of complex social-ecological systems (SES). We argue that reusable building blocks (RBBs) known from professional software development can mitigate these issues. An RBB is a submodel that represents a particular mechanism or process that is relevant across many ABMs in an application domain, such as plant competition in vegetation models, or reinforcement learning in a behavioural model. RBBs need to be distinguished from modules, which represent entire subsystems and include more than one mechanism and process. While linking modules faces the same challenges as integrating different models in general, RBBs are “atomic” enough to be more easily re-used in different contexts. We describe and provide examples from different domains for how and why building blocks are used in software development, and the benefits of doing so for the ABM community and to individual modellers. We propose a template to guide the development and publication of RBBs and provide example RBBs that use this template. Most importantly, we propose and initiate a strategy for community-based development, sharing and use of RBBs. Individual modellers can have a much greater impact in their field with an RBB than with a single paper, while the community will benefit from increased coherence, facilitating the development of theory for both the behaviour of agents and the systems they form. We invite peers to upload and share their RBBs via our website - preferably referenced by a DOI (digital object identifier obtained e.g. via Zenodo). After a critical mass of candidate RBBs has accumulated, feedback and discussion can take place and both the template and the scope of the envisioned platform can be improved.more » « less
An official website of the United States government
